Skews in the Phenomenon Space Hinder
Generalization in Text-to-lmage Generation



SoTA Text-to-Image Models Struggle at Spatial Relations

A pink box is on top of blue box,
A horse riding an astronaut A mouse chasing a cat which is on top of a yellow box,
which is on top of a green box.
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Error Sources for Faulty Spatial Relations

Isolate the error source with experiments

e Text encoder does not
correctly encode positions

e |mage decoder does not
distinguish positions

e Communication channel
does not correctly transmit
spatial relations.
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Error Source 1: Are positions correctly encoded from text?
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Error Source 1: Are positions correctly encoded from text?

Experiment: probe position information from token encodings

e Text encoder does not
correctly encode positions

<noun1> is on top of <noun2> <nouni> is at the bottom of <noun2>

Text Encoder Text Encoder

Text T B T B

Space
Training: noun1, noun2 randomly sampled from Stain = {English nouns}.

Testing: noun1, noun2 randomly sampled from Stest,

Stest and Strain don’t overlap.
Text Encoder



Error Source 1: Are positions correctly encoded from text?

Results
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Error Source 2: Is position info available in image decoders?
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Error Source 2: Is position info available in image decoders?

Experiment: ablate position-embeddings from image decoders

e Image decoder does not
distinguish positions (e.g.
being invariant to positions)
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Stable Diffusion: No image positional embeddings by default!



Error Source 2: Is position info available in image decoders?

Image decoder does not
distinguish positions (e.g.
being invariant to positions)
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Models w/o image positional embeddings exhibit both slower
convergence in training and worse performance in testing.



Error Source 3: Faulty communication of spatial relations
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Why is the communication of spatial relations hard?

e Arelation does not take any perceptible form. Abstractness

e Arelation can only be observed with concrete objects, but it .
Disentanglement

should not be permanently associated with those objects.

e Arelation can be associated with “unseen” objects after learning.  Composition



Formalization

When a message specifies spatial relation between objects, what a formal structure does it entail?

Role-filler bindings

Fillers: concrete values, e.g. objects

Roles: abstract positions




Formalization

When a message specifies spatial relation between objects, what a formal structure does it entail?

Role-filler bindings

Fillers: concrete values, e.g. objects

Roles: abstract positions

Binding: put fillers into the roles ) (book-subj, cap-obj)

% =SS "\\

5
Each image/caption corresponds to a role-filler binding. & 7 - A book right of a cap



Error Source 3: Faulty communication of spatial relations

When a message specifies spatial relation between objects, what a formal structure does it entail?

Role-filler bindings

L
Possible cause for a faulty e Communication channel
communication channel: does not correctly transmit

spatial relations.

Training data only covers a

skewed space of this formal : :
Communication

structure. .
\ Channel

Phenomenological
space

Cross Attention (CA)



Error Source 3: Faulty communication of spatial relations
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Error Source 3:

(astronaut-subj, horse-obj)
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Error Source 3: Skew in the phenomenological space!

(astronaut-subj, horse-obj) H T i
(horse-subj, astronaut-obj) H(A i %

_______________________________________________________________________________________

Missing

An astronaut riding a horse




Two Metrics to Quantify Skew
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Two Metrics to Quantify Skew
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Skew Hinders Learning Generalizable Spatial Relations
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Skew Hinders Learning Generalizable Spatial Relations

Experimental Design

Hypothesis: Completeness,, Balance,, Completeness,, Balance, I Generalization \

Create training sets with varied
Visual fillers: ¢ P ¥ completeness (CPL) and balance (BLC) scores.

soda backpack vase piano
Synthetic icons
y A0 ¥ %

LinQUistic fillel'S: dumpling screen sweater  cupcake
English nouns Y i Y s
jacket carrot keyboard soap
Roles: Top
Shaded: role-filler bindings covered by training data
Bottom

Empty: unseen role-filler bindings held-out for testing

Metric: accuracy (1 if both objects and the relation is correct, otherwise 0)



Skew Hinders Learning Generalizable Spatial Relations

Results
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Incomplete or unbalanced data greatly harms generalization.



That’s Everything! Thank you!

Why current text-to-image models are prone to faulty spatial relations?

Reduce phenomenological skew ——
measured by the proposed CPL and BLC.

Text Communication | Image
Space Channel Space
Text Encoder Cross Attention (CA) Unet - SA
Autoregressive & multimodal models should be Make sure the image SA layers take image
preferred over contrastively pre-trained ones. positional embeddings as input.

New dataset/augmentation with better CPL and BLC
New architecture that generalizes even when trained
under skewed data source.



